Abstract
Nonfluent aphasia is characterized by simplified sentence structures and word-level abnormalities, including reduced use of verbs and function words. The predominant belief about the disease mechanism is that a core deficit in syntax processing causes both structural and word-level abnormalities. Here, we propose an alternative view based on information theory to explain the symptoms of nonfluent aphasia. We hypothesize that the word-level features of nonfluency constitute a distinct compensatory process to augment the information content of sentences to the level of healthy speakers. We refer to this process as lexical condensation. We use a computational approach based on language models to measure sentence information through surprisal, a metric calculated by the average probability of occurrence of words in a sentence, given their preceding context. We apply this method to the language of patients with nonfluent primary progressive aphasia (nfvPPA; n = 36) and healthy controls (n = 133) as they describe a picture. We found that nfvPPA patients produced sentences with the same sentence surprisal as healthy controls by using richer words in their structurally impoverished sentences. Furthermore, higher surprisal in nfvPPA sentences correlated with the canonical features of agrammatism: a lower function-to-all-word ratio, a lower verb-to-noun ratio, a higher heavy-to-all-verb ratio, and a higher ratio of verbs in -ing forms. Using surprisal enables testing an alternative account of nonfluent aphasia that regards its word-level features as adaptive, rather than defective, symptoms, a finding that would call for revisions in the therapeutic approach to nonfluent language production. ANN NEUROL 2023;94:647-657.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have