Abstract

The heterogeneity of cell membranes, specifically the presence of lipid rafts, has been hypothesized to play a role in a large number of cellular processes. Although extensive work has been carried out to show the function of lipid rafts in these processes, the characterization of lipid rafts has proven to be extremely difficult. It is known that raft size is relevant to the function of cellular processes and that raft coalescence may be a driving factor for these processes; however, it remains unclear what factors influence raft size and coalescence in natural cell membranes. In this work, we study two ternary model phospholipid and cholesterol systems using two steady-state fluorescent techniques to detect and characterize membrane domains. Domain size is determined through the use of a model to relate experimental Förster resonance energy transfer (FRET) measurements to domain size. Domains in the range of 3-15 nm were detected in a dioleoylphosphatidylcholine-dipalmitoylphosphatidylcholine-cholesterol (DOPC-DPPC-Chol) system, while only a very small region containing domains was detected in a 1-palmitoyl-2-oleoyl-phosphatidylcholine-dipamitoylphosphatidylcholine-cholesterol (POPC-DPPC-Chol) system. In addition, the polarity-dependent emission maximum shift of the acceptor 1-myristoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (DAN-PC) was used to detect the type of liquid phase(s) present in the membrane. It was found that, even in the case in which no two-phase coexistence was observed (POPC-DPPC-Chol), two liquid phases are present, although not necessarily in coexistence. These steady-state fluorescent techniques provide a method for detecting the presence of very small domains in model membranes and provide previously inaccessible detail about the phase behavior of these two systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call