Abstract

In this paper, the authors introduce the methodology of combined studies on cutting edge preparation and tool performance testing. Five main fields of research on cutting edge preparation are identified in this study of cutting edge preparation while cutting edge microgeometry consists of data associated with tool edge and rake face. Uncoated and TiN coated mixed oxide ceramics inserts have been tested concerning their microgeometry and wear resistance and there is presented a sequence of measuring to identify cutting edge preparation and properties of coating. Authors propose the sequence which considers cutting edge preparation as a factor controlling performance of cutting edge in hard turning operations. Four steps in the sequence of performance testing include measurements with effects of wear criterion and machining time. Measured results show that combined effects of both preparation and coating reduce considerably friction forces in scratch tests and there is very negligible change of microhardness of uncoated and coated ceramics. Relationships between cutting edge microgeometry and acceptable machined surface roughness which results from the sequence in tool performance testing have been identified. Finally, tool performance indices are based on units which characterize machined surface roughness, tool edge wear and forces when hard turning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call