Abstract
An optimized measuring point planning and fitting method for rotor flange and spigot structures was proposed to achieve precise measurement of position and pose of the aeroengine rotors during docking processes. Firstly, the impact of circumferential phase angle, distribution range angle, total number of measuring points, and number of distribution rings on measurement uncertainty was analyzed. The measuring point planning schemes for flange and spigot were proposed. Secondly, the Gauss Newton iterative solution principle considering damping factors was clarified. Subsequently, an optimized iterative reweighting method consisting of weight iterative estimation, singular value detection under the Chauvenet criterion, and clustering detection was proposed for fitting the flange annular end face. A mapping point total least squares method with practical geometric significance was proposed for fitting the spigot cylinder face. Finally, measuring and fitting experiments were performed. The singular measuring point detection methods were verified. Under the optimized fitting methods, the goodness of fit and average orthogonal distance of flange and spigot structures are 0.756 and 0.089 mm, respectively, which have higher fitting accuracy than the other traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.