Abstract

This paper proposes a mixed integer nonlinear programming (MINLP) approach to measure the system performances of multiple-channel queueing models with imprecise data. The main idea is to transform a multiple-channel queue with imprecise data to a family of conventional crisp multiple-channel queues by applying the α-cut approach in fuzzy theory. On the basis of α-cut representation and the extension principle, two pairs of parametric MINLP are formulated to describe the family of crisp multiple-channel queues, via which the membership functions of the performance measures are derived. To demonstrate the validity of the proposed procedure, a real-world case of multiple-channel fuzzy queue is investigated successfully. Since the performance measures are expressed by membership functions rather than by crisp values, the fuzziness of input information is completed conserved. Thus, the results obtained from the proposed approach can represent the system more accurately, and more information is provided for system design in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.