Abstract

Localisation of simple stimuli such as angle vertices may contribute to a plethora of illusory effects. We focus on the Müller-Lyer illusion in an attempt to measure and characterise a more elementary effect that may contribute to the magnitude of said illusion. Perceived location error of angle vertices (a single set of Müller-Lyer fins) and arcs in a 2D plane was measured with the aim to provide clarification of ambiguous results from studies of angle localisation and expand the results to other types of stimuli. In three experiments, we utilised the method of constant stimuli in order to determine perceived locations of angle vertices (Experiments 1 and 2) as well as circular and elliptical arcs (Experiment 3). The results show significant distortions of perceived compared to objective vertex locations (all effect sizes d > 1.01, p < .001). Experiment 2 revealed strong effects of angle size and fin length on localisation error. Mislocalization was larger for more acute angles and longer angle fins (both ηp² = .43, p < .001). In Experiment 3, localisation errors were larger for longer arcs (ηp² = .19, p = .001) irrespective of shape (circular or elliptical). We discuss the effect in the context of modern trends in research of the Müller-Lyer illusion as well as the widely popular centroid theory. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.