Abstract

This study presents a novel and user-friendly technique for detecting the lateral capillary force on a floating spherical particle. The technique leverages the interplay between the capillary attracting forces, hydrostatic pressure forces, and magnetic repulsion forces. A magnetic field is applied to induce a surface curvature in the liquid, resulting in a non-uniform distribution of capillary and hydrostatic pressure forces across the particle's surface. This leads to a stable equilibrium position of the particle at a specific distance from the magnet. The study analyzes the equilibrium position and other relevant parameters in comparison with the developed theory. Classical mechanics and intermolecular forces are applied to establish the theoretical basis for the method, modeling the behavior of the particle in response to the magnetic field, surface curvature, and hydrostatic pressure. The equilibrium position of the particle is determined by numerically solving the balance of forces equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.