Abstract
A systematic understanding of the relationship between intelligence and consciousness can only be achieved when we can accurately measure intelligence and consciousness. In other work, I have suggested how the measurement of consciousness can be improved by reframing the science of consciousness as a search for mathematical theories that map between physical and conscious states. This paper discusses the measurement of intelligence in natural and artificial systems. While reasonable methods exist for measuring intelligence in humans, these can only be partly generalized to non-human animals and they cannot be applied to artificial systems. Some universal measures of intelligence have been developed, but their dependence on goals and rewards creates serious problems. This paper sets out a new universal algorithm for measuring intelligence that is based on a system’s ability to make accurate predictions. This algorithm can measure intelligence in humans, non-human animals and artificial systems. Preliminary experiments have demonstrated that it can measure the changing intelligence of an agent in a maze environment. This new measure of intelligence could lead to a much better understanding of the relationship between intelligence and consciousness in natural and artificial systems, and it has many practical applications, particularly in AI safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Artificial Intelligence and Consciousness
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.