Abstract
Consistency is one of the key concepts of logic; logicians have put a great deal of effort into proving the consistency of many logics. Understanding what causes inconsistency is also important; some logicians have developed paraconsistent logics that, unlike classical logics, allow some contradictions without making all formulas provable. Another direction of research studies inconsistency by measuring the amount of inconsistency of sets of formulas. While the initial attempt in 1978 was too ambitious in trying to do this for first-order logic, this research got a substantial boost when an inconsistency measure was proposed for propositional logic in 2002. Since then, researchers in logic and artificial intelligence (AI systems need the capability to deal with inconsistency) have made many interesting proposals and found related issues. Almost all of this work has been done for propositional logic. The purpose of this paper is to extend inconsistency measures to logics that also contain operators, such as modal operators. We use the terminology “generalized propositional logic” for such logics. We show how to extend propositional inconsistency measures to sets of formulas in any such generalized propositional logic. Examples are used to illustrate how various modal operators, including spatial and tense operators, fit into this framework. We also show that the addition of operators leads to a weak type of inconsistency. In all cases, the calculations for several inconsistency measures are given.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have