Abstract

BackgroundGait analysis using foot-mounted IMUs is a promising method to acquire gait parameters outside of laboratory settings and in everyday clinical practice. However, the need for precise sensor attachment or calibration, the requirement of environments with a homogeneous magnetic field, and the limited applicability to pathological gait patterns still pose challenges. Furthermore, in previously published work, the measurement accuracy of such systems is often only validated for specific points in time or in a single plane. Research questionThis study investigates the measurement accuracy of a gait analysis method based on foot-mounted IMUs in the acquisition of the foot motion, i.e., position and angle trajectories of the foot in the sagittal, frontal, and transversal plane over the entire gait cycle. ResultsA comparison of the proposed method with an optical motion capture system showed an average RMSE of 0.67° for pitch, 0.63° for roll and 1.17° for yaw. For position trajectories, an average RMSE of 0.51 cm for vertical lift and 0.34 cm for lateral shift was found. The measurement error of the IMU-based method is found to be much smaller than the deviations caused by the shoes. SignificanceThe proposed method is found to be sufficiently accurate for clinical practice. It does not require precise mounting, special calibration movements, or magnetometer data, and shows no difference in measurement accuracy between normal and pathological gait. Therefore, it provides an easy-to-use alternative to optical motion capture and facilitates gait analysis independent of laboratory settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call