Abstract

In this paper we present a method for obtaining accurate finesse by recovering the Lorentzian profile of cavity resonances with a laser continuously locked to the cavity and apply it to weak gas absorption measurements. The technique was implemented on our noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) experimental setup. The measurement is performed in the cavity-locked regime, leading to high repeatability and easy automation. The technique involves locking the carrier to a fundamental mode of the cavity and sweeping a second set of sidebands across adjacent cavity modes. The Lorentzian line shape can be reconstructed through a measurement of the transmitted optical power of the auxiliary sidebands. The cavity finesse and gas absorption can then be extracted from these power measurements. The accuracy of our measurements was verified by comparing our results to those obtained with the cavity ring down technique. We demonstrate the use of the technique in spectroscopy by measuring the absorption coefficient of the R(14) line of 12C16O that has been well characterized by others. The gas absorption results obtained were consistent with other experimental measurements and theoretical calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call