Abstract

Many studies devoted to efficiency performance evaluation in the education sector are based on measures of central tendency at school level as, for example, the average values of students belonging to the same school. Although this is a common and accepted way of summarizing data from the original observations (students), it is not less true that this approach neglects the existing dispersion of data, which may become a serious problem if variability across schools is high. Additionally, imprecision may arise when experts on each evaluated subject select the battery of questions, with different levels of difficulty, which will be the base for the final questionnaires completed by students. This paper uses data from US students and schools participating in PISA (Programme for International Student Assessment) 2015 to illustrate that schools' efficiency measures based on aggregate data and imprecision may reflect an inaccurate picture of their performance if they are compared to measures estimated accounting for broader information provided by all students of the same school. In order to operationalize our approach, we resort to Fuzzy Data Envelopment Analysis. This methodology allows us to deal with the notion of fuzziness in some variables such as the socio-economic status of students or test scores. Our results indicate that the estimated measures of performance obtained with the fuzzy DEA approach are highly correlated with those calculated with traditional DEA models. However, we find some relevant divergences in the identification of efficient units when we account for data dispersion and vagueness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.