Abstract

The relatively high cost of commercially available raindrop spectrometers and disdrometers has inhibited detailed and intensive research on drop size distribution, kinetic energy and momentum of rainfall which are important for understanding and modelling soil erosion caused by raindrop detachment. In this study, an approach to find the drop size distribution, momentum and kinetic energy of rainfall using a relatively inexpensive device that uses a piezoelectric force transducer for sensing raindrop impact response is introduced. The instrument continuously and automatically records, on a time-scale, the amplitude of electrical pulses produced by the impact of raindrops on the surface of the transducer. The size distribution of the raindrops and their respective kinetic energy are calculated by analysing the number and amplitude of pulses recorded, and from the measured volume of total rainfall using a calibration curve. Simultaneous measurements of the instrument, a rain gauge and a dye-stain method were used to assess the performance of the instrument. Test results from natural and simulated rainfalls are presented. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call