Abstract

Measuring data drift is essential in machine learning applications where model scoring (evaluation) is done on data samples that differ from those used in training. The Kullback-Leibler divergence is a common measure of shifted probability distributions, for which discretized versions are invented to deal with binned or categorical data. We present the Unstable Population Indicator, a robust, flexible and numerically stable, discretized implementation of Jeffrey’s divergence, along with an implementation in a Python package that can deal with continuous, discrete, ordinal and nominal data in a variety of popular data types. We show the numerical and statistical properties in controlled experiments. It is not advised to employ a common cut-off to distinguish stable from unstable populations, but rather to let that cut-off depend on the use case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call