Abstract
We consider measure-valued processes with constant mass in Hilbert space. The stochastic flow which carries the mass satisfies a stochastic differential equation with coefficients depending on the mass distribution. This mass distribution can be considered as the conditional distribution of the solution of a certain SDE. In contrast to the filtration equation, in our case the random measure cannot diffuse: a single particle cannot break up or turn into clouds. The Markov structure of the measure-valued processes obtained is studied and a comparison with Fleming–Viot processes is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.