Abstract

This paper classifies and discusses the energy flexibility improvement strategies for demand responsive control in grid-interactive buildings based on a comprehensive study of the literature. Both supply and demand sides are considered. The flexibility measures range from renewable energy such as photovoltaic cells (PV) and wind to heating, ventilation, and air conditioning (HVAC) systems, energy storage, building thermal mass, appliances, and occupant behaviors. Currently, owing to the highly developed smart appliances and sensing communication techniques, DR is considered as an essential measure for improving energy flexibility in buildings without much additional investment. With the help of advanced demand response (DR) control strategies and measures, buildings can become more flexible in terms of power demand from the power grid. In this way, buildings achieve a better ability to balance differences in energy supply and demand. Furthermore, a synergistic approach with various measures is advisable, e.g., the use of energy storage technologies with PV and passive DR methods. This paper summarizes the measures for improving the flexibility of commercial and residential buildings, and develops a systematic methodology framework to evaluate energy demand flexibility in buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.