Abstract
We introduce a set, $Q({\bf T})$, of Borel probability measures on the circle such that each $\mu\in Q({\bf T})$ obeys the conclusion of the Kerckhoff–Masur–Smillie theorem [3]: if $q$ is a meromorphic quadratic differential with at worst simple poles on a closed Riemann surface, then for each $\mu\in Q({\bf T})$ and $\mu$-a.e. $\zeta\in{\bf T}$, $\zeta q$ has uniquely ergodic vertical foliation. As an example, the normalized Cantor–Lebesgue measure belongs to $Q({\bf T})$. The analysis also yields an analogue, for the Teichmüller horocycle flow, of a theorem of Dani: every locally finite ergodic invariant measure for the Teichmüller horocycle flow is finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.