Abstract

We survey examples of dynamical systems on non–compact spaces which exhibit measure rigidity on the level of infinite invariant measures in one or more of the following ways: all locally finite ergodic invariant measures can be described; exactly one (up to scaling) admits a generalized law of large numbers; the generic points can be specified. The examples are horocycle flows on hyperbolic surfaces of infinite genus, and certain skew products over irrational rotations and adic transformations. In all cases, the locally finite ergodic invariant measures are Maharam measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.