Abstract
Observations of the time-dependent cosmic-ray Sun shadow have been proven as a valuable diagnostic for the assessment of solar magnetic field models. In this paper, seven years of IceCube data are compared to solar activity and solar magnetic field models. A quantitative comparison of solar magnetic field models with IceCube data on the event rate level is performed for the first time. Additionally, a first energy-dependent analysis is presented and compared to recent predictions. We use seven years of IceCube data for the moon and the Sun and compare them to simulations on data rate level. The simulations are performed for the geometrical shadow hypothesis for the moon and the Sun and for a cosmic-ray propagation model governed by the solar magnetic field for the case of the Sun. We find that a linearly decreasing relationship between Sun shadow strength and solar activity is preferred over a constant relationship at the 6.4σ level. We test two commonly used models of the coronal magnetic field, both combined with a Parker spiral, by modeling cosmic-ray propagation in the solar magnetic field. Both models predict a weakening of the shadow in times of high solar activity as it is also visible in the data. We find tensions with the data on the order of 3σ for both models, assuming only statistical uncertainties. The magnetic field model CSSS fits the data slightly better than the PFSS model. This is generally consistent with what is found previously by the Tibet AS−γ Experiment; a deviation of the data from the two models is, however, not significant at this point. Regarding the energy dependence of the Sun shadow, we find indications that the shadowing effect increases with energy during times of high solar activity, in agreement with theoretical predictions.7 MoreReceived 26 June 2020Accepted 11 December 2020DOI:https://doi.org/10.1103/PhysRevD.103.042005© 2021 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasCosmic ray propagationMagnetic field generation & plasma dynamoSpace & astrophysical plasmaWave-wave, wave-particle interactionsPropertiesInterplanetary magnetic fieldTechniquesCherenkov detectorsCosmic ray & astroparticle detectorsCosmic rays & astroparticlesNeutrino detectorsTest-particle methodsGravitation, Cosmology & AstrophysicsPlasma PhysicsParticles & Fields
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.