Abstract

The IceCube neutrino observatory is capable of detecting ultra-high-energy cosmic neutrinos even above PeV - EeV energies. These extremely high energy (EHE) neutrinos (≥ 10 PeV) are produced from interactions of the most energetic cosmic rays (≥ 1 EeV) and ambient photons/matter in the sources or diffuse photon fields such as the cosmic microwave background. Therefore, observations of these EHE neutrinos can be used to probe the origin of the highest energy cosmic rays with energies extending up to 100 EeV. We present the results of an updated analysis of the EHE neutrino sample with energies greater than ~ 1 PeV in 6 years of IceCube data (3 years of partially completed IceCube data (2008-2011) and 3 years of completed IceCube data (2011-2014)). While one event depositing an energy of 770±200 TeV was observed, it is incompatible with a hypothesis of cosmogenic origin. The resultant improvement in the upper limit corresponds to a factor of more than 2.5 from the previous study of two years of data from the nearly completed IceCube detector. Our limits disfavor the parameter space of sources of ultra-high-energy cosmic rays for which the cosmological evolution is stronger than the star formation rate, where the source candidate classes of active galactic nuclei (AGN) and gamma-ray bursts (GRB) belong, assuming the cosmic-ray composition is proton dominated. Results from a 7-year data analysis by adding another year’s worth of data to the current sample are also anticipated soon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call