Abstract

The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs). Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.

Highlights

  • The majority of the wind turbines operating today are horizontal axis wind turbines (HAWT).there is a growing interest in vertical axis wind turbines (VAWT), which have the potential to reduce the cost of energy [1,2]

  • The size of the turbine rotor can be adjusted in two dimensions to meet the power needs: i.e., both the diameter and height of the rotor can be changed for VAWTs, compared to HAWTs, where the rotor size is defined by its diameter

  • The objective of the current study is to present experimental data on the normal forces on the straight-bladed VAWT operating at an open site at high Reynolds numbers

Read more

Summary

Introduction

There is a growing interest in vertical axis wind turbines (VAWT), which have the potential to reduce the cost of energy [1,2]. The size of the turbine rotor can be adjusted in two dimensions to meet the power needs: i.e., both the diameter and height of the rotor can be changed for VAWTs, compared to HAWTs, where the rotor size is defined by its diameter. This is beneficial for the water current power applications, since the turbine size can be limited by both the width and depth of a channel. Several projects on large offshore VAWTs are currently being carried out [4,5,6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.