Abstract

Among renewable energy resources, wind energy is one of the best alternative for power generation. Recently, vertical axis wind turbine (VAWT) received renewed interest as small-scale wind energy converter due to its suitability for urban application, where the wind condition is known to be unsteady and turbulence. Amongst various type of VAWTs, H-type Darrieus rotor has become more popular, thanks to its simple construction features, resulting to low manufacturing and installation cost. The aim of this paper is to evaluate numerically the power performance of straight-bladed Darrieus VAWT with different turbine solidity using computational fluid dynamic (CFD) technology. A series of two-dimensional CFD simulations of a three-bladed H-type Darrieus rotor were performed with 3 different solidities, σ (0.3, 0.5 and 0.7) to evaluate their power performance. Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations were used to calculate the instantaneous moment coefficient, Cm and power coefficient, Cp over a range of tip speed ratio, λ (0.5–4.5) with a free stream velocity of 8.0 m/s. The simulation results show that high solidity turbine performed well at low values of λ while turbine with low solidity has a wider operating range of λ and performed better at λ > 3.0 due to less blade-wake interactions between upstream and downstream halves of the turbine and lower blockage effect. The findings lend substantially to our understanding of physics flow around blades and turbine in order to optimize the power performance of small scale straight-bladed Darrieus VAWT operating in unsteady and turbulence wind condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call