Abstract

The surface tension of bubbles is critical for processes involving mixed liquid-gas systems, from sea spray aerosol generation to firefighting foam aspiration. In particular, the size- and surfactant-dependent time scales of dynamic surface tension decay due to adsorption of surface-active chemicals at the curved interface significantly dictate the multiphase system dynamics. While size-dependent surfactant adsorption and interfacial dynamics have been well characterized for liquid-liquid systems using microfluidic platforms, application of microfluidic methods to liquid-gas systems has received less attention. This work uses a high-throughput microfluidic tensiometer to measure the static and dynamic surface tension of microscale bubbles compared with millimeter bubbles characterized by pendant drop. It is shown that the static surface tension measurements for surfactant-free interfaces with microfluidics show good agreement with pendant drop for most systems. At the same time, its accuracy can be affected by bubble pressure, inertia force at high Re, drag force, bubble expansion, and image processing limitation. In the presence of surfactants, the dynamic surface tension measurements show that both smaller bubbles and higher surfactant concentrations can lead to a much shorter time to reach equilibrium compared with pendant drop, similar to the observation for liquid-liquid interfaces. This work shows the potential of a microfluidic tensiometer to capture early time surface tension decay and accurately measure surface tension even in the presence of Marangoni stress tangential to the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call