Abstract

The development of X-ray spectrographic analysis of light elements, which are O, C and B, has bee n performed for many applications using an end-window type X-ray tube with Rh-target and thin Be-window, wavelength dispersing devices, which are synthetic multilayers or total reflection mirror (with a specific filter) and a gas flow proportional counter with a thin film window. In Fig. 1 factors related to the intensity measurements in X-ray fluorescence analysis are shown. The excitation efficiency in the soft and ultrasoft X-ray region is very low because of the lower intensity of primary X-rays and low fluorescence yield of light elements. Instead of the wavelength dispersive method of Bragg reflection, having high resolution and low reflectivity, monochromatization combining total reflection by a selected mirror and an appropriate filter offered an alternate approach in order to increase measured intensity with reasonable optical resolution. Synthetic multilayers which have higher resolution and lower intensity compared with the performance of the mirror method have become popular for the detection of soft and ultrasoft X-ray region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call