Abstract

This paper reports on measurements of freestream nitric oxide (NO) rotational and vibrational temperatures and partial pressures, collected in the Caltech T5 reflected shock tunnel. Quantum cascade lasers, emitting mid-infrared light resonant with fundamental rovibrational NO transitions, were directed through the supersonic (Mach ) freestream flow. Tunable diode laser absorption spectroscopy (TDLAS) was used to measure the path-averaged rotational and vibrational temperatures of NO in the flow, in addition to the NO partial pressure. The temperature measurements demonstrate strong evidence of NO rotational and vibrational equilibrium during the 1 ms test period. Agreement between vibrational and rotational temperatures was observed in all experiments, including one and four experiments, during and after the nominal test time. Absorption from CO and was also observed in the TDLAS measurements, though their concentrations cannot be accurately estimated. The goal of these and future experiments is to develop and demonstrate TDLAS experimental strategies for high-enthalpy impulse facilities and to help to inform improvements of existing models and solvers used for prediction of freestream conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call