Abstract
Mould tools used for LCM processes such as Resin Transfer Moulding (RTM) and Injection/Compression Moulding (I/CM) must withstand local forces due to compaction of the fibre reinforcement, and due to resin pressure generated within the laminate. A series of RTM and I/CM experiments have been carried out, with the focus placed on measurement of normal stress distributions exerted on the mould surface. In addition, total mould clamping force and injection gate pressure histories have been recorded. I/CM experiments using force-controlled secondary compaction were also undertaken, and compared to the velocity-controlled cases. Observed fluid pressure fields showed good agreement with theory, namely a logarithmic distribution during fluid injection and a quadratic distribution during the compression driven filling phase of I/CM. Significant spatial variation in normal stress due to reinforcement compaction was observed. The influence of the fluid pressure on the total stress experienced by the mould was observed to be a function of both the fibre volume fraction of the part and the applied injection pressure, the latter being more pronounced at lower part volume fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.