Abstract

Measurements of cosmic-ray neutron dose rates with a balloon in Sanriku, Japan (geographic location: 39 degrees N, 142 degrees E; corresponding geomagnetic latitude: 30 degrees N) were conducted at an altitude from 0.2 to 25 km on 25-26 August 2004 when solar activity was at an average level. Neutron dose rates given as ambient dose equivalent rates (H(10)) were measured with high-sensitive neutron dose equivalent counters and electronic silicon personal dosimeters (EPDs). The neutron dose rates increased with increasing altitude, but they were saturated around 15-20 km and decreased with increasing altitude beyond 20 km. The neutron ambient dose equivalent rate was 1.5 microSv/h(- 1) at 20 km. Measured values were corrected for the deviation of the energy response of the dose equivalent counter from the fluence-to-ambient dose equivalent conversion coefficient, and the corrected values were very close to the calculated values with EPCARD. On the other hand, neutron measurements by the EPDs gave about 10 times overestimation because of the high sensitivity to cosmic-ray protons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call