Abstract

We present longitudinal and Hall magneto-resistance measurements of a ``magnetic'' two-dimensional electron gas (2DEG) formed in modulation-doped Zn$_{1-x-y}$Cd$_{x}$Mn$_{y}$Se quantum wells. The electron spin splitting is temperature and magnetic field dependent, resulting in striking features as Landau levels of opposite spin cross near the Fermi level. Magnetization measurements on the same sample probe the total density of states and Fermi energy, allowing us to fit the transport data using a model involving extended states centered at each Landau level and two-channel conduction for spin-up and spin-down electrons. A mapping of the extended states over the whole quantum Hall effect regime shows no floating of extended states as Landau levels cross near the Fermi level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.