Abstract
Flow-induced dynamic free-surface deformations are experimentally studied in a confined liquid volume of 5cSt silicone oil (Prandtl number Pr = 68). The geometry of the problem is a liquid column concentrically surrounded by an annular gas channel. A gas stream entering the duct from the top or bottom entrains the motionless liquid. The dynamic deformation of the gas–liquid interface is caused by a steady axisymmetric shear-driven flow. The experiments are performed in normal gravity conditions and the static deformation of a liquid bridge interface is unavoidable. The magnitude and shape of the dynamic surface deformation are analyzed using optical measurements with a comprehensive treatment of the images. The deviation of the free surface shape from the corresponding equilibrium profile is determined with an uncertainty of about 0.1 μm. The order of magnitude of the interface deformation is proportional to the capillary number, which is defined as the ratio of the viscous force per unit area to the capillary pressure. The study is performed for a large range of volumes and aspect ratios as well as for different gas velocities. As a general trend, the dynamic deformation grows with the gas velocity, which plays the role of a driving force, but a linear dependence is not observed for all volume ratios, despite the small Reynolds numbers, 280 < Reg < 560. The dynamic deformation displays a strong dependence on the liquid volume ratio and the direction of the gas stream parallel to the interface. When the gas flow is directed against gravity, the largest interface deformations are observed at the smallest volumes among the analyzed ones. In contrast, when the gas stream is aligned with gravity, then the deformations decrease with a decrease in the volume ratio, at a certain value attaining zero (vanishing) and then changing sign.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have