Abstract

Shock tube tests were conducted on a number of binary CO2 mixtures with N2, O2, CH4, H2, CO, and Ar impurities, from a range of initial pressures and temperatures. This paper provides examples of results from these tests. The resulting decompression wave speeds are compared with predictions made utilizing different equations of state (EOS). It was found that, for the most part (except for binaries with H2), the GERG-2008 EOS shows much better performance than the Peng–Robinson (PR) EOS. All binaries showed a very long plateau in the decompression wave speed curves. It was also shown that tangency of the fracture propagation speed curve would normally occur on the pressure plateau, and hence, the accuracy of the calculated arrest toughness for pipelines transporting these binary mixtures is highly dependent on the accuracy of the predicted plateau pressure. Again, for the most part, GERG-2008 predictions of the plateau are in good agreement with the measurements in binary mixtures with N2, O2, and CH4. An example of the determination of pipeline material toughness required to arrest ductile fracture is presented, which shows that prediction by GERG-2008 is generally more conservative and is therefore recommended. However, both GERG-2008 and PR EOS show much worse performance for the other three binaries: CO2 + H2, CO2 + CO, and CO2 + Ar, with CO2 + H2 being the worst. This is likely due to the lack of experimental data for these three binary mixtures that were used in the development of these EOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.