Abstract

The phase behavior of hexamethyldisiloxane (HMDS)–carbon dioxide (CO2) binary mixture was investigated using a constant volume view cell. The accuracy of the measurement technique was inspected against the bubble point pressure data in the literature for ethanol (C2H5OH)–carbon dioxide (CO2) binary mixture. The bubble point pressures for C2H5OH–CO2 agreed well with the literature values. The bubble point pressures of HMDS–CO2 binary mixture were determined at five different temperatures (T=298.2K, 308.2K, 313.2K, 323.2K, 333.2K) and at various compositions. The bubble point pressures increased with increasing temperature and CO2 mole fraction in the binary mixture. The phase behavior of the binary mixture was modeled using the Peng–Robinson Stryjek–Vera equation of state (PRSVEoS). The binary interaction parameters were regressed from experimental bubble point pressures at each temperature and were found to exhibit a linear dependency on temperature. The HMDS–CO2 binary mixture was also found to exhibit Type II phase behavior. Additionally, P–T–ρ measurements for the same binary system were conducted and excess molar volumes were calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call