Abstract
Household coal combustion is considered as the greatest emission source for black carbon (BC) and an important source for organic carbon (OC) in China. However, measurements on BC and OC emission factors (EF(BC) and EF(OC)) are still scarce, which result in large uncertainties in emission estimates. In this study, a detailed data set of EF(BC) and EF(OC) for household coal burning was presented on the basis of 38 coal/stove combination experiments. These experiments included 13 coals with a wide coverage of geological maturity which were tested in honeycomb-coal-briquette and raw-coal-chunk forms in three typical coal stoves. Averaged values of EF(BC) are 0.004 and 0.007 g/kg for anthracite in briquette and chunk forms and 0.09 and 3.05 g/kg for bituminous coal, respectively; EF(OC) are 0.06 and 0.10 g/kg for anthracite and 3.74 and 5.50 g/kg for bituminous coal in both forms, respectively. Coal maturity was found to be the most important influencing factor relative to coal's burning forms and the stove's burning efficiency, and when medium-volatile bituminous coals (MVB) are excluded from use, averaged EF(BC) and EF(OC) for bituminous coal decrease by 50% and 30%, respectively. According to these EFs, China's BC and OC emissions from the household sector in 2000 were 94 and 244 gigagrams (Gg), respectively. Compared with previous BC emission estimates for this sector (e.g., 465 Gg by Ohara et al., Atmos. Chem. Phys. 2007, 7, 4419-4444), a dramatic decrease was observed and was mainly attributed to the update of EFs. As suggested by this study, if MVB is prohibited as household fuel together with further promotion of briquettes, BC and OC emissions in this sector will be reduced by 80% and 34%, respectively, and then carbonaceous emissions can be controlled to a large extent in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.