Abstract

This paper presents the first results from a prototype infrared radiometer which has been developed to measure variations in atmospheric water vapor column abundance from high altitude sites. The performance of the infrared radiometer is compared and contrasted with that of a water vapor monitor operating at radio frequencies. Analysis shows that the infrared radiometer can measure variations at the level of ∼ 1 μm precipitable water vapor (pwv) in an integration time of 1 s when the total column abundance is ∼0.5 mm pwv. Since variations in atmospheric water vapor are the dominant source of phase noise in (sub)millimeter astronomical interferometry, an instrument capable of rapid and high sensitivity water vapor measurements has the potential to provide the necessary phase correction information for interferometric arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.