Abstract
Diurnal variations in atmospheric water vapor are studied by analyzing 30‐min‐averaged data of atmospheric precipitable water (PW) for 1996–2000 derived from Global Position System (GPS) observations from 54 North America stations. Vertical structures in the diurnal cycle of atmospheric water vapor are examined using 3‐hourly radiosonde data from Lamont, Oklahoma, during the 1994–2000 period. Significant diurnal variations of PW are found over most of the stations. The diurnal (24 hour) cycle, S1, which explains over 50% of the subdaily variance, has an amplitude of 1.0–1.8 mm over most of the central and eastern United States during summer and is weaker in other seasons. The S1 peaks around noon in winter and from midafternoon to midnight in summer. The semidiurnal (12 hour) cycle is generally weak, with an amplitude of a few tenths of 1 mm. At Lamont, specific humidity in the free troposphere is significantly higher in the early morning (0000–0008 local solar time (LST)) than during the day (0800–1800 LST). This diurnal variation changes little from ∼4 to 16 km above the ground. Near the surface, specific humidity tends to be lower in the morning than in the afternoon and evening in all seasons except summer. This near‐surface diurnal cycle propagates upward through the lower troposphere (up to ∼4 km). Errors in seasonal mean humidity due to undersampling the diurnal cycle with twice‐daily synoptic soundings (at 0000 and 1200 UTC) are generally small (within ±3% or ±0.5 mm for PW), but it can easily reach 5–10% if there is only one random sounding per day. Several physical processes are proposed that could contribute to the diurnal variations in atmospheric water vapor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.