Abstract

Gas vortices generated in the freeboard of a bubbling fluidised bed have become the centre of increasingly more research due to the advances in experimental technology. The behaviour of gas flow in the freeboard of a bubbling fluidised bed is of interest for applications such as the gasification of coal where reactions of gas mixtures, as well as gas–particle heat and mass transfer take place. Knowledge of the hydrodynamics of the gas within the freeboard can be hard to characterise, especially the detailed behaviour of gases escaping from bubbles that erupt at the bed surface. In the present study, experiments were conducted on a rectangular three-dimensional gas–solid fluidised bed. The experiments used a particle imaging velocimetry (PIV) measurement technique to visualise and measure the gas flow within the freeboard after a single bubble eruption. A computational study was carried out using Eulerian–Eulerian, kinetic theory of granular flow approach with a quasi-static flow model and with LES used to account for gas turbulence. Results from a three dimensional simulation of the experimental fluidised bed were compared with experimental velocity profiles of gas flow in the freeboard of the gas–solid fluidised bed after a bubble eruption. The CFD simulations showed a qualitative agreement with the formation of the gas vortices as the bubble erupted. Consistent with experimental findings the CFD simulations showed the generation of a pair of vortices. However, the simulations were unable to demonstrate downward flow at the centre of the freeboard due to particles in free fall after a bubble eruption event was observed in the experiments. Velocity profiles from the CFD data are in reasonably good agreement with the characteristic trends observed in the experiments, whereas the CFD model was able to predict the gas vortices phenomena and the velocity magnitudes were over-predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.