Abstract

In this work, to investigate the source of pressure fluctuations, behavior of a single bubble in a two-dimensional gas–solid fluidized bed was studied. Pressure sensors located at different heights of the bed measured presure fluctuations, and simultaneously a high speed camera was used to pursue all steps from formation to eruption of bubbles. Two types of particles were applied with different sizes and densities. Experiments showed that the maximum amplitude of formation was independent of the bubble diameter. But, it depended on density of particles, velocity of injection and the distance from bed surface. When injection stopped, there was a minimum in pressure profile related to the higher dense phase voidage for a higher superficial gas velocity after injection. Also, the maximum pressure fluctuation of bubble eruptions was related to the bubble diameter, density and size of particles. It was concluded that pressure fluctuations of formation, passing and eruption of bubbles in fluidized beds are originated due to changes in dense phase voidage, bed voidage and movement of particles during bubble eruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.