Abstract

This annual report describes results of NBS research directed toward the development of measurement methods for semiconductor materials and devices which will lead to more effective use of high-power semiconductor devices in applications for energy generation, transmission, conversion, and conservation. Emphasis is on the development of measurement methods for power-device-grade silicon. Major accomplishments during this reporting period were : (1) characterizing by deep level transient spectroscopy (DLTS) the energy levels in silicon power rectifier diodes, (2) writing of a computer program to predict lifetime-related parameters using as input the measured properties of the deep energy levels, (3) developing a novel method to detect nonexponential transients using a conventional double-boxcar DLTS system, (4) analyzing transient capacitance measurements to extend the techniques to nonexponential decays, (5) using a platinum resistance thermometer to calibrate temperature sensing diodes to obtain the precision needed for careful isothermal capacitance measurements, and (6) utilizing trap changing time as a technique to resolve overlapping DLTS peaks in sulfur-doped silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.