Abstract

A procedure for a technique to measure the transverse coherence of synchrotron radiation X-ray sources using a single phase grating interferometer is reported. The measurements were demonstrated at the 1-BM bending magnet beamline of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). By using a 2-D checkerboard π/2 phase-shift grating, transverse coherence lengths were obtained along the vertical and horizontal directions as well as along the 45° and 135° directions to the horizontal direction. Following the technical details specified in this paper, interferograms were measured at different positions downstream of the phase grating along the beam propagation direction. Visibility values of each interferogram were extracted from analyzing harmonic peaks in its Fourier Transformed image. Consequently, the coherence length along each direction can be extracted from the evolution of visibility as a function of the grating-to-detector distance. The simultaneous measurement of coherence lengths in four directions helped identify the elliptical shape of the coherence area of the Gaussian-shaped X-ray source. The reported technique for multiple-direction coherence characterization is important for selecting the appropriate sample size and orientation as well as for correcting the partial coherence effects in coherence scattering experiments. This technique can also be applied for assessing coherence preserving capabilities of X-ray optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call