Abstract
BackgroundThe ability of peripheral nerves to stretch and slide is thought to be of paramount importance to maintain ideal neural function. Excursion in peripheral nerves such as the tibial can be measured by analysis of ultrasound images. The aim of this study was to assess the degree of longitudinal tibial nerve excursion as the ankle moved from plantar flexion to dorsiflexion in a standardised weight-bearing position. The reliability of ultrasound imaging to measure tibial nerve excursion was also quantified.MethodsThe tibial nerve was imaged over two separate sessions in sixteen asymptomatic participants in a weight-bearing position. Longitudinal nerve excursion was calculated from a three-second video loop captured by ultrasound imaging using frame-by-frame cross-correlation analysis. Intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) were used to assess the intra-rater reliability. Standard error of the measurement (SEM) and smallest real difference (SRD) were calculated to assess measurement error.ResultsMean nerve excursion was 2.99 mm SEM ± 0.22 mm. The SRD was 0.84 mm for session 1 and 0.66 mm for session 2. Intra-rater reliability was excellent with an ICC = 0.93.ConclusionsAssessment of real-time ultrasound images of the tibial nerve via frame-by-frame cross-correlation analysis is a reliable non-invasive technique to assess longitudinal nerve excursion. The relationship between foot posture and nerve excursion can be further investigated.
Highlights
During the gait cycle lower extremity motions such as ankle joint dorsiflexion and pronation of the foot will require the tibial nerve to adapt to positional change imposed by joint motions
The ability of peripheral nerves to stretch and slide is thought to be of paramount importance to maintain ideal neural function [1,2,3]
The degree of measurement error, expressed by the Standard error of the measurement (SEM) (0.28 mm for session 1 and 0.22 mm for session 2), smallest real difference (SRD) (0.84 mm for session 1 and, 0.68 mm for session 2) and SRD percentage (27% for session 1 and, 27% for session 2), varied minimally between the scans measured in the weightbearing position
Summary
During the gait cycle lower extremity motions such as ankle joint dorsiflexion and pronation of the foot will require the tibial nerve to adapt to positional change imposed by joint motions. To accommodate for positional joint change the tibial nerve possesses mechanical properties which enable it to withstand compression, adapt to repetitive force and stretch and slide in relation to the surrounding tissues [1]. Real-time ultrasound imaging provides a non-invasive means of measuring in-vivo longitudinal nerve excursion. Advances in ultrasound imaging equipment and the development of specific frame-by-frame cross-correlation analysis software have made it possible to analyse real-time ultrasound images, allowing for quantification of in-vivo peripheral nerve excursion [10]. Excursion in peripheral nerves such as the tibial can be measured by analysis of ultrasound images. The aim of this study was to assess the degree of longitudinal tibial nerve excursion as the ankle moved from plantar flexion to dorsiflexion in a standardised weight-bearing position. The reliability of ultrasound imaging to measure tibial nerve excursion was quantified
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have