Abstract

Disruptions have the potential to cause severe damage to large tokamaks like ITER. The mitigation of disruption damage is one of the essential issues for the tokamak. Massive gas injection (MGI) is a technique in which large amounts of a noble gas are injected into the plasma in order to safely radiate the plasma energy evenly over the entire plasma-facing wall. However, the radiated energy during the disruption triggered by massive gas injection is found to be toroidally asymmetric. In order to investigate the spatial and temporal structures of the radiation asymmetry, the radiated power diagnostics for the J-TEXT tokamak have been upgraded. The multi-channel arrays of absolute extreme ultraviolet photodiodes have been upgraded at four different toroidal positions to investigate the radiation asymmetries during massive gas injection. It is found that the toroidal asymmetry is associated with plasma properties and MGI induced MHD activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.