Abstract

A photothermal radiometry technique is being developed at the NPL with the goal of improving the accuracy of thermal diffusivity measurements. The principle is to perform a laser-induced thermal experiment while simultaneously making accurate measurements of the experimental boundary conditions. A numerical three-dimensional heat diffusion model based on thermal transfer functions has been developed to account for the measured boundary conditions. The thermal diffusivity is determined from the experimental data by a nonlinear, least-squares fit to the model. Experiments carried out on pure metals at 900 K demonstrate good agreement between the theoretical predictions and experimental data, and uncertainties of about 1.5% for the thermal diffusivities of platinum, titanium, and germanium were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call