Abstract

We present a Twyman-Green interferometer (TGI)-based polarization phase-shifting shearing interferometric technique for testing the conical surface of an axicon (AX) lens. In this technique, the annular beam generated due to the passing of an expanded collimated laser beam traveling along the axis of revolution of the transparent glass AX element is split up into its reflected and transmitted components, having the plane of polarization in the orthogonal planes, by the polarization beam splitter (PBS) cube of the TGI-based optical setup. The split-up components are made to travel unequal paths along the two arms of the TGI and are recombined by the PBS. Because of the difference in path lengths traveled by the annular conical beams, a linear shear is introduced along the radial direction between the interfering components. Thus, the resulting interference pattern gives a map of the optical path difference (OPD) between two successive close points along a radial direction on the conical surface of the AX lens. The OPD map along radial directions, and hence the slopes/profiles of the conical surface, are obtained by applying polarization phase-shifting interferometry. Results obtained for an AX lens are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call