Abstract

A Sagnac interferometer (SI), consisting of a polarization beam splitter (PBS), along with two equally spaced plane mirrors that are inclined at 45° to each other, is transformed into a folded Twyman Green interferometer (TGI) by placing a mirrored parallel plate (MPP) into the hypotenuse arm of the SI. The converging input beam produced by a telescope objective (TO) is split into reflected (s-polarized) and transmitted (p-polarized) components by the PBS. The p- and s-polarized focal spots are made to fall on the mirrored end surfaces of the parallel plate (PP). The retroreflected p- and s-polarized beams become collimated after passing through the TO. A linear shift of the PP in either (longitudinal) direction alters the positions of the p- and s-polarized focal spots and results in a set of converging and diverging spherical wavefronts that interfere to form concentric circular fringes. We applied polarization phase-shifting interferometry to obtain the optical path difference (OPD) variation of the interference field. The displacement is calculated from the OPD variation. A validation experiment has been carried out by introducing known shifts to the PP. The setup can be used for displacement as well as distance measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call