Abstract
Here we study three different types of astigmatic Gaussian beams, whose complex amplitude in the Fresnel diffraction zone is described by the complex argument Hermite polynomial of the order (n, 0). The first type is a circularly symmetric Gaussian optical vortex with and a topological charge n after passing through a cylindrical lens. On propagation, the optical vortex "splits" into n first-order optical vortices. Its orbital angular momentum per photon is equal to n. The second type is an elliptical Gaussian optical vortex with a topological charge n after passing through a cylindrical lens. With a special choice of the ellipticity degree (1: 3), such a beam retains its structure upon propagation and the degenerate intensity null on the optical axis does not “split” into n optical vortices. Such a beam has fractional orbital angular momentum not equal to n. The third type is the astigmatic Hermite-Gaussian beam (HG) of order (n, 0), which is generated when a HG beam passes through a cylindrical lens. The cylindrical lens brings the orbital angular momentum into the original HG beam. The orbital angular momentum of such a beam is the sum of the vortex and astigmatic components, and can reach large values (tens and hundreds of thousands per photon). Under certain conditions, the zero intensity lines of the HG beam "merge" into an n-fold degenerate intensity null on the optical axis, and the orbital angular momentum of such a beam is equal to n. Using intensity distributions of the astigmatic HG beam in foci of two cylindrical lenses, we calculate the normalized orbital angular momentum which differs only by 7 % from its theoretical orbital angular momentum value (experimental orbital angular momentum is –13,62, theoretical OAM is –14.76).
Highlights
В этой работе с помощью теоретической оценки показано, что у такого пучка орбитальным угловым моментом (ОУМ) может быть равен 10 000 на фотон
We study three different types of astigmatic Gaussian beams, whose complex amplitude in the Fresnel diffraction zone is described by the complex argument Hermite polynomial of the order (n, 0)
The orbital angular momentum of such a beam is the sum of the vortex and astigmatic components, and can reach large values
Summary
В этой работе с помощью теоретической оценки показано, что у такого пучка ОУМ может быть равен 10 000 на фотон. В [9] показано, что ОУМ такого составного пучка может быть равен 204 на фотон. В [23] показано, что на двойном фокусном расстоянии от цилиндрической линзы на прямой линии, идущей под углом 45° к декартовым осям, лежат изолированные нули интенсивности (точки сингулярности), число которых точно совпадает с топологическим зарядом оптического вихря n.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have