Abstract

We present measurements of the change in ionic conductance due to double-stranded (ds) DNA translocation through small (6 nm diameter) nanopores at low salt (100 mM KCl). At both low (<200 mV) and high (>600 mV) voltages we observe a current enhancement during DNA translocation, similar to earlier reports. Intriguingly, however, in the intermediate voltage range, we observe a new type of composite events, where within each single event the current first decreases and then increases. From the voltage dependence of the magnitude and timing of these current changes, we conclude that the current decrease is caused by the docking of the DNA random coil onto the nanopore. Unexpectedly, we find that the docking time is exponentially dependent on voltage (t ∝ e(-V/V(0))). We discuss a physical picture where the docking time is set by the time that a DNA end needs to move from a random location within the DNA coil to the nanopore. Upon entrance of the pore, the current subsequently increases due to enhanced flow of counterions along the DNA. Interestingly, these composite events thus allow to independently measure the actual translocation time as well as the docking time before translocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call