Abstract

The band alignment at the SiO2-GaN interface is important for passivation of high voltage devices and for gate insulator applications. X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy have been used to observe the interface electronic states as SiO2 was deposited on clean GaN(0001) surfaces. The substrates, grown by metallorganic chemical vapor deposition, were n- (1×1017) and p-type (2×1018) GaN on 6H-SiC(0001) with an AlN(0001) buffer layer. The GaN surfaces were atomically cleaned via an 860 °C anneal in an NH3 atmosphere. For the clean surfaces, n-type GaN showed upward band bending of 0.3±0.1 eV, while p-type GaN showed downward band bending of 1.3±0.1 eV. The electron affinity for n- and p-type GaN was measured to be 2.9±0.1 and 3.2±0.1 eV, respectively. To avoid oxidizing the GaN, layers of Si were deposited on the clean GaN surface via ultrahigh vacuum e-beam deposition, and the Si was oxidized at 300 °C by a remote O2 plasma. The substrates were annealed at 650 °C for densification of the SiO2 films. Surface analysis techniques were performed after each step in the process, and yielded a valence band offset of 2.0±0.2 eV and a conduction band offset of 3.6±0.2 eV for the GaN-SiO2 interface for both p- and n-type samples. Interface dipoles of 1.8 and 1.5 eV were deduced for the GaN-SiO2 interface for the n- and p-type surfaces, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.