Abstract

Very high frequency plasma sources are often accompanied by plasma density nonuniformities associated with a standing-wave effect. Electron density measurements using a plasma absorption probe show density nonuniformities that can be larger than predicted by a standing wave model. These structures have been associated with harmonics of the electric fields in the plasma. The authors present the first time and phase-resolved measurements of the spatial structure of the electromagnetic waves in a 100 MHz plasma source using argon at 40 mTorr employing a B dot probe. The authors show that the harmonic structure is related to a current reversal and subsequent circulation that appears when the sheath collapses during the radio frequency cycle. The circulation is driven by inward traveling waves that are electromagnetic in nature, not plasma waves traveling at the electron thermal velocity. Double dipole probe measurements were used to validate the B dot probe electric field measurements derived from the time derivative of Βθ which is derived from the B dot probe signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.