Abstract

Measurements of absorbance and fluorescence emission were carried out on aqueous suspensions of polystyrene (PS) microspheres with a diameter of 2.5 µm using a spectrophotometer with an integrating sphere detector. The apparatus and the principles of measurements were described in our earlier publications. Microspheres with and without green BODIPY@ dye were measured. Placing the suspension inside an integrating sphere (IS) detector of the spectrophotometer yielded (after a correction for fluorescence emission) the absorbance (called A in the text) due to absorption by BODIPY@ dye inside the microsphere. An estimate of the absorbance due to scattering alone was obtained by subtracting the corrected BODIPY@ dye absorbance (A) from the measured absorbance of a suspension placed outside the IS detector (called A1 in the text). The absorption of the BODIPY@ dye inside the microsphere was analyzed using an imaginary index of refraction parameterized with three Gaussian-Lorentz functions. The Kramer-Kronig relation was used to estimate the contribution of the BODIPY@ dye to the real part of the microsphere index of refraction. The complex index of refraction, obtained from the analysis of A, was used to analyze the absorbance due to scattering ((A1- A) in the text). In practice, the analysis of the scattering absorbance, A1-A, and the absorbance, A, was carried out in an iterative manner. It was assumed that A depended primarily on the imaginary part of the microsphere index of refraction with the other parameters playing a secondary role. Therefore A was first analyzed using values of the other parameters obtained from a fit to the absorbance due to scattering, A1-A, with the imaginary part neglected. The imaginary part obtained from the analysis of A was then used to reanalyze A1-A, and obtain better estimates of the other parameters. After a few iterations, consistent estimates were obtained of the scattering and absorption cross sections in the wavelength region 300 nm to 800 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call