Abstract
In osteomalacia decreased mineralization reduces the stiffness and static strength of bone. We hypothesized that hypomineralization in osteomalacic bone could be quantified by solid-state (31)P magnetic resonance imaging (SS-MRI). Hypomineralization was measured with a 3D radial imaging technique at 162 MHz (9.4T) in rabbit cortical bone of hypophosphatemic (HY) and normophosphatemic (NO) animals. The results were compared with those obtained by quantitative micro-CT (micro-CT) and (31)P solution NMR. 3D images of 277 microm isotropic voxel size were obtained in 1.7 hr with SNR approximately 9. Mineral content was lower in the HY relative to the NO group (SS-MRI: 9.48 +/- 0.4 vs. 11.15 +/- 0.31 phosphorus wet wt %, P < 0.0001; micro-CT: 1114.6 +/- 28.3 vs. 1175.7 +/- 23.5 mg mineral/cm(3); P = 0.003). T(1) was shorter in the HY group (47.2 +/- 3.5 vs. 54.1 +/- 2.7 s, P = 0.004), which suggests that relaxation occurs via a dipole-dipole (DD) mechanism involving exchangeable water protons, which are more prevalent in bone from osteomalacic animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.