Abstract

Extensive use of per- and polyfluoroalkyl substances (PFASs) has resulted in their widespread presence in natural waters. Concern for public health requires reliable measurement methods for determining their distribution and risks. Here, a sampling method based on diffusive gradients in thin films (DGT) was developed for measuring PFASs in drinking water sources. Fluorinated graphite (FG) particles were used to prepare the DGT binding gel for selective enrichment of trace PFASs in an aqueous environment. The FG-DGT method did not show sensitivity to relevant environmental parameters including pH (5.0–9.0), ionic strength (0.001–0.5 M), or DOM concentration (0–30 mg/L). The FG-DGT had enough capacity for deployment of up to four months. Six traditional and emerging PFASs including PFOS, PFOA, PFHpA, PFHxS, PFNA, and 6:2 FTSA at the ng/L level were detected in two major reservoirs serving as public drinking water sources by FG-DGT method coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). PFOA appeared at the highest observed concentrations in the drinking water sources. The research demonstrates that FG-DGT is an effective and efficient tool for monitoring PFASs in drinking water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call